2x^2+x^2+155=180

Simple and best practice solution for 2x^2+x^2+155=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x^2+x^2+155=180 equation:



2x^2+x^2+155=180
We move all terms to the left:
2x^2+x^2+155-(180)=0
We add all the numbers together, and all the variables
3x^2-25=0
a = 3; b = 0; c = -25;
Δ = b2-4ac
Δ = 02-4·3·(-25)
Δ = 300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{300}=\sqrt{100*3}=\sqrt{100}*\sqrt{3}=10\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{3}}{2*3}=\frac{0-10\sqrt{3}}{6} =-\frac{10\sqrt{3}}{6} =-\frac{5\sqrt{3}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{3}}{2*3}=\frac{0+10\sqrt{3}}{6} =\frac{10\sqrt{3}}{6} =\frac{5\sqrt{3}}{3} $

See similar equations:

| 2.5(x)=3.75 | | 11a+1=34 | | x~10=4 | | -2=11-5t+10+2t | | -16t^2+32t+7=23 | | 18=30^x | | 2x-3=5x+13 | | X+28=6e+22 | | 10x+4=17x+41 | | -12m-14-10m=-80 | | -9(x+2)+3=-15 | | 7x-20=x+40 | | (X+20)+(3x-6)=90 | | -(4k+5)=3k-2 | | w–(-2)=6 | | 10x-4=17x-41 | | (3x+18)2=9x-15 | | 4x-28=2x | | (X+10)+(3x-4)=90 | | w–(-2)= | | 12=18k-2 | | 3/5(15x-10)=2x-20 | | 3(x+7)+2=18+2x | | -2=3/k+7 | | 5(-1+4x)=-125 | | 2320/x=5 | | 7.2=2y | | 3-5x=18. | | 3x-2(x+1)+4(x+1)=185 | | 2x^2-4=-30 | | 4.217x-3,67=6.33-0.783x | | 5+-2=n+18 |

Equations solver categories